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I. INTRODUCTION

The mechanics of penetration and perforation of solids has long been of
interest for military applications and is currently being applied to a number
of industrial applications such as the integrity of nuclear reactor pressure
vessels, crashworthiness of vehicles, protection of spacecra“t from meteoroid
impact, and explosive forming and welding of metals.

Impacts at velocities in excess of 1 km/s excite the high frequency modes
of the colliding solids. The response is confined to a localized region
(typically 2 to 3 projectile diameters) and is characterized by the presence
. of shock waves and high hydrodynamic pressures which, on contact, can exceed
the material strength by an order of magnitude. For ordnance velocity impacts
(1-3 xm/s) the pressures decay rapidly due to the presence of free surfaces
and the effects of material strength and, except at the interface, oscillate
at values comparable to the material strength. Under hypervelocity conditions
(b-12 ¥km/s), hydrodynamic pressure dominates the behavior of the solids for
the bulk of the penetration process. Material strength effects become
significant only in the very late stages of the process. Superimposed on
these is extensive plastic deformation, large localized heating and material
failure due to a number of mechanisms (i.e., petalling, spall, adiabatic
shear). The failure mechanism(s) activated depend on geometry, loading his-

tory and material constitutidn. Strain rates of 1053-l at the impactt

interface a.ndllo2 - 103sf1 elsevhere are not uncommon. Penetration and
perforation are formidable physical problems and it is not surprising that the
bulk of the research in this area has been experimental in nature.

A complete mathematical description of the dynamics of impacting solids
‘must account for the geometry of the interacting bodies; elastic, plastic, and
shqek wave propagation; hydrodynamic flow, finite strains and deformations;
thermal and frictional effects, and the initiation and propagation of failure
in the colliding solids, During the past decade, rapid progress has been

achievéd in ébmputational'penetration mechanics,! Today, two- and
three-dimensional simulations of high velocity impact phenomena, are routinely
performed in conjunction with experimental studies in terminal ballistics.

Numerical simulation of penetration phenomena can be performed with both
Lagrangian (mass reference) and Eulerian (laboratory reference) descriptions.
In the laboratory reference scheme, the computational mesh remains.stationary

, " with material being transported through it based on velocity gradients present
in the flow field. Such a description is ideally suited for modeling severe
material deformations that occur in hypervelocity impacts, explosive-metal
interactions and the penetration of thick targets (i.e., situations wherein
the ratio of target thickness to penetrator diameter, t/D, exceeds 3). In the
mass reference description the computational mesh is fixed in the material and
distorts with it in accordance with applied loads. The Lagrangian approach
offers the advantages of being conceptually. straightforward (due to the lack
of convective terms to represent mass flow) and permitting material boundaries
to be delineated without ambiguity. However, irregular mesh shapes arising
from severe material deformations lead to inaccuracies in the numerical
approximation which can grow to unacceptable levels, In addition, since

9
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almost all Lagrangian wave propagation codes use explicit temporal integration
schemes (in which the maximum time step is limited to satisfy a stability
condition), violent distortion of the computational mesh leads to a reduction
of the time step to such a low value that continuing the calculation becomes
economically prohibitive., These problems can be overcome through the use of
rezoning, coupled Lagrangian-Eulerian descriptions, and contact surface
erosion algorithms.

In rezoning, a new Lagrange computational mesh is overlaid on the old one
and a rezone algorithm maps mesh quantitites of the severely distorted mesh
onto the new mesh such that conservation of mass, momentum, total energy and
the constitutive relationship are satisfied. Rezoning can be a costly and
nontrivial process. For very thick target penetration studies (plate
thickness to projectile diameter ratios greater than 10) 30 to SO rezones are
not uncommon, Frequent rezoning renders the computational mesh semi-Eulerian
in that large distortions are realized but material history and location of
material boundaries are diffused.

Many impact situations are not simulated very well with Lagrangian or
Eulerian descriptions alone (i.e., fluid-structure interaction problems).
Coupling methodologies for combining Lagrangian and Eulerian descriptions
exploit the respective advantages of each. In general, the Eulerian portion
of the computational mesh behaves as a pressure boundary acting on the
Lagrangian regions, while the Lagrangian regions represent obstacles in the
Eulerian flow field. This technique does not circumvent the possibility of
excessive diffusion of material history. While cumbersome and time-consuming
logic for abating diffusion of material interfaces and histories have been
demonstrated, the computational penalties for such logic are high.

A most promising technique to extend the capability of Lagrangian codes to
deep penetration and spaced plate perforation problems is the concept of
contact surface erosion. The Lagrangian codes developed in the seventies re-
quired that the contact surface or sliding interface specified at the
beginning of the problem remain unchanged throughout. This requirement was
imposed not from physical considerations but to simplify the interface logic.
Its effect was to prohibit total failure of material dictated by the physical
problem, resulting in either unrealistic distortions of the computational mesh
leading to large truncation errors or to temporal integration increments which
render further computation uneconomical.

The eroding contact surface concept has been under active investigation at
a number of centers since 1978 and is now finding its way into production
codes, The most comprehensive treatment is to be found in the DYSMAS/L code
developed by Massmann, Poth and their agssociates at Industrieanlagen-
Betriebsgesellschaft mbH (Ottobrun, W. Germany). The contact processor in

DYSMAS /L 2- is based on a generalized master-slave concept. Structural
surfaces vhich are to be controlled by the contact processor are defined

as master planes and slave points. Both master surface erosion and internal
cracking can be treated. In the case of element separation {crack opening)
the separated nodal masses of the affected elements are designated as slave
points to permit calculation of momentum exchange in case of further contact.
Redefinition of the contact surface in case of erosion or cracking is treated
automatically, requiring no user intervention.
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3; Methods for dynamic redefinition of sliding interfaces in the presence of
) total element failure have also been developed by Johnson.5 6 The earlier |
3’ approach, implemented in the EPIC-3S code, had several limitations and |
:ﬂ restrictions (i.e., only obliquities of 45 or less could be treated and users !
> had to specify a priori the extent of target damage) and has not been used
h; extensively. Many of these have been removed from the techniques now used in |
‘ current versions of EPIC-2 and EPIC-3. Snow7 implemented logic to dynamically
2 redefine the master surface as element failure occurs in the EPIC-2 code. The
o ) approach retained the requirement in the original version of the code that the
,t‘ . master surface remain continuous and employed an asymmetric interface treat-
: ment. Most recently Belytschko has introduced eroding contact surface
concepts into the EPIC-3 code, making use of eight node hexahedral elements
and hourglass viscosity to stabilize spurious deformation modes caused by one
bﬁ point integration.
,A:“:
2! II. CONTACT SURFACE EROSION FOR
R LAGRANGIAN COMPUTATIONS
- Contact surfaces or sliding interfaces are appropriate in situations where
1) large relative motions can be expected at material boundaries. Situations
P} involving the interactions of gases and fluids with solid walls, the
;] penetration of targets by projectiles, and contact between colliding bodies
3. require the use of sliding interfaces. They prove useful also in regions
where large shears or fractures develop. Most sliding interface methods are
M based on the decomposition of acceleration and velocity into components normal
~ and tangential to the interface. Motions in the normal direction are
*Q continuous when materials are in contact but independent when they are
y separated. Tangential motions are independent when materials are separated or !
- the interface is frictionless but are modified if there is contact and a ;
: frictional force is present. Materials on either side of an interface may ?
separate if a user-specified criterion is exceeded or if materials are in
QE tension, and may collide again if previously separated. A comprehensive
E: discussion of sliding interface treatments is given by Hallquist.9 10
3
@E The sliding interface algorithm in the EPIC-2 code7 has been restructured
% to simulate contact surface erosion during impact. Initially, a series of
;5 nodes lying on the interface are identified and labelled as either masgter or
A slave nodes. In the method employed here, a set of nodal points that define
3' element edges or segments which have both nodes declared to be master nodes
ey define unique master segments of the master surface on which slave nodes are
FG not permitted to intrude. These master segments are not required to define
) ) the master surface in a continuous manner. When penetration of a slave node
Vo through the master surface occurs, the velocities of the master and slave
. nodes are adjusted to conserve angular and linear momentum as described in
3: reference 11. Once the intrusions are removed, the designation of master and
!\ slave is interchanged and the procedure is repeated. Each temporal in-
Ei tegration increment is comprised of the following steps:
1. Determine master segments, on one side of the interface, that circum-
zj scribes elements which have not exceeded the user specified failure criterion.
&
.o
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2. For each slave node, find the master segments which encompass the
slave node within the search radius R which is ~ 0.6 of the length of the

‘ segment,

e

:‘ 4 3. Once all segments associated with a given slave node have been

z:i* located, determine if penetration of the segment has occurred. If only one
Lo segment is penetrated, proceed with steps 4-7. If penetration of more than
Y one segment is indicated by the above check, a decision must be made as to the
S ¢ master segment to which the slave node is to be moved. In the current

:j}ﬁ procedure, the normal projection of the slave node onto each candidate segment

is computed. The slave node is then repositioned onto the master segment that
results in the minimum change to its kinetic energy. WNote that the maximum
kinetic energy permitted by physical laws is the kinetic energy for unob-
structed (i.e. nonintruding) slave node travel. This condition serves as an
effective discriminant in selecting the appropriate master segment for
relocation of the slave node.

4L, If there is intrusion, position the slave node on the master segment
in a direction normal to the segment,

5. Update master and slave node velocities to conserve linear and angular
momentum.

6. Update nodal forces to account for change in nodal velocities.

T. At the option of the code user, interchange master and slave desig-
nations and repeat steps 1-6.

III, FINITE PLATE PERFORATION

Figure 1 shows results for the perforation of a 2.5kem armor steel plate
by a 65 gram, hemispherically-nosed S-7 tool steel rod with a striking
velocity of 1103 m/s. Figure 2 shows similar results for a plane strain

simulation at an obliquity of 60° and a striking velocity of 1647 m/s. Table

: 1 shows a comparison of computed residual masses and velocities with those

obtained experimentally by Lambert12 from radiographic data, The agreement is

quite good for the normal impact case, The higher residual mass and velocity
for the oblique impact case is characteristic of plane strain analyses due to
differences in energy-displacement relationships for exact and plane strain

formulation of computational elements.13

IV, PENETRATION OF SEMI-INFINITE TARGETS

A number of calculations with effectively semi-infinite targets struck by
long rods (L/D = 10) at velocities of 1550, 2560, 3114, and 3750 m/s were also

performed and compared with experimental data published by Hohler and Stilp.14
The rods were made of Cl10W2 steel, had a diameter, D, of O.43cm, length, L,
of 4,3cm and density of 7.85 g/cc. The target material was HzB20 armor steel.
In both calculations and experiments, the projectile was totally consumed.
Also in both cases, the target thickness was at least twice the expected
penetration depth, Figure 3 summarizes the initial conditions.

12
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& PENETRATION SEQUENCE FOR
tad]
Ky AXISYMMETRIC IMPACT , 1103 M/S

i ——n K
-

) TIME=20.03 s TIME=50.00 us
W CYCLE= 498 CYCLE=992

TIME=80.06 s TIME=120.00 us
CYCLE=1447 CYCLE= 2057

Figure 1. Deformation Profiles for Normal Penetration of Finite Target
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PENETRATION SEQUENCE FOR
60 DEGREE IMPACT , 1647 M/S

TIME= .00 us CYCLE *1

TIME= 60.06us CYCLE = 839

TIME = 120.03us CYCLE = 1528
. 4

Figure 2. Plane Strain Results for Oblique Perforation of Finite Target

"h;',\ N P AT AT A RV AT AF AT NS e
CRACE S \u',‘-)', R TR NS
M&&&t SEOCACA NN N xﬂ':‘."tn‘:"‘. L)




e R T T WCEW T W WA AT W Tt Tt T T L TN AL aR Bt lat AAE R Lat Sk Bas 4

PENETRATION OF SEMI - INFINITE TARGETS

PROJECTILE: C110W2 STEEL
L/D 10
L4.3CH
7.88 GRAMS/CC

TARGET: HZB820 ARMOR STREL
SHN 200 - 330 KP/ 80. WM
SOUND VELOCITY, C 8980 u/S

Figure 3. Initial Conditions for Semi-infinite Target Penetration Study

15

-

A" W (0

.0, ! bl

O OLOOOOO 0 SN MO (Y
UAIOOOUNGH0 1 (
RIS IR B e L e

Wty
£ %



W WY TVW adiha 4o o £ ) o T TR WY T . T " Y L aia oo |

Table 1. Results:for Finite Target Penetration

CALCULATED AND MEASURED
RESIDUAL PARAMETERS

L/Ds10 65 grams D=1.0em
Residual Velecity (m/s) Residual Mass (g)
8 Vg(m/s) . ——
0* 1219 925 910 34.5 39.1**
0 1103 709 690 32.1 32.7
60° 1647 1202 1145 22.9 16.8

S Ref: ARBRL - TR - 02072, May 1978
*® tstimoted trom radiograph

Results for the 3114 m/s impact condition are shown in Figures 4-T7.
Computed normalized penetration depth and crater diameter are compared with

data from Hohler and St:llp1 in Table 2 and Figures 8-10.

The computed values for penetration depth and crater diameter in Table 2a
were obtained using the static material properties for projectile and target
given in reference 14, Table 2b shows results using high strain rate data

for the steel target obtained from Meyer's dissertation15 with projectile
strengths taken from reference 14, Both Table 2 and Figures 8-10 use computed
values at the time when the projectile has been totally consumed (~45 us for
v/c = 0,26, between 22-30 us for the remaining cases). Agreement with
experimental results is generally good, except for the lowest striking
velocity. In this regime, the impact response of materials is very strongly
influenced by material strength. Evidently high strain rate data for the
projectile material are required here, as well as a better material
description (an elastic, perfectly-plastic model was used throughout). As
striking velocity increases the influence of material strength decreases and
agreement with experiment improves. The rather large overprediction of

penetration depth at v/c = 0,26 (1550 m/s) using quasi-static G~10'h/s) data
clearly suggests that dynamic characterization of materials is a necessary
adjunct to impact experiments and code calculations in the ordnance velocity
(0.5 - 2 km/s) regime.
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Deformation at 10 and 15 Microseconds after Impact
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Figure 7. Overlay of Computed and Experimental Hole Profiles, vs = 3.11k km/s
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Table 2a. Comparison of Calculated and Measured
Residual Parameters for Penetration of Semi-Infinite Targets

v/e P/L P/d d/D
EXP__ CODE EXP__ CODE EXP_ CODE
(+0.06) (#0.15)
. 0.26 0.33  0.58 1.5 2.5 2.2 2.3
0.43 0.80  0.86 2.9 3.0 2.7 2.8
0.52 0.90  0.91 3.0 3.0 3.0 3.1
0.63 ~0.93 0.93 2.7 2.8 3.5 3.3

Table 2b. Computations Using Dynamic Strength Data
for the Target Material

vie P/L P/d a/p
EXP CODE EXP CODE EXP CODE

(+0.06) (#0.15)

0.26 " 0.33 0.b40 1.5 1.8 2.2 2.3

0.43 0.80 0.75 2.9 2.9 2.7 2.8

0052 0090 0.85 3.0 3.0 300 3.0

0.63 0.93 0.88 2.7 2.8 3.5 3.3

Projectile Target

L=1U4,3cnm HzB20 >

MATL = Cl10W2 steel BHN = 260-330 kp/mm

D = 0,43 cm

= 7,85 g/cc
NOTES: P = penetration depth v = projectile striking velocity
d = crater diameter ¢ = sound velocity for HzB20
(5950 m/s)

At the time the projectile is totally consumed, sufficient energy is
trapped in the target to permit additional hole growth. Specifically,
compressive pressures well in excess of the static or dynamic yield strength
are to be found at the base of the crater at the time of total projectile
erosion. Once the projectile is totally consumed a free surface at the crater
base is created. The large compressive pressures will become tensile to
satisfy this new boundary condition and will cause additional material failure
until pressures and stresses fall below the material strength (this will
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e typically occur between 80-100 us for all cases studied). The extent of this
" growth is shown in Table 3 which compares the experimentally measured
Kot (non-dimensionalized) penetration depth and hole diameter with those obtained
.}i} computationally (using data from reference 15 for the target material) at a
: ﬂﬁ time when the projectile is totally consumed and also at 100 us after impact.
K- Changes in the diameter are negligibly small while hole growth is on the order
2 of 3-5%.
i A‘\‘
Ql”. Table 3. Residual Hole Growth
‘; !
2 vie (P/L),, (P/L), (P/E)g, (a/D),,  (d/D),  (a/D)gyp
S
b N

i 0.26 0.L40 0.45 2.33 2.30 2.33 2.3
K3 0.43  0.75 0.80 0.80 2.80 2.80 2.8
[\ >

Fa
1A 0.52  0.85 0.89 0.90 3.0 3.0 3.0
O

n“‘h“

4 0.63 0.88 0.97 0.93 3.3 3.2 3.3
el . -
?{ﬁa Note: tl = time at which projectile is totally consumed. For v/c of

-\“'.\.‘v
3538 0.26, 0.43, 0.52 and 0.63. This occurs at 45, 32, 26 and 22 us

t respectively.

t2 = 100 us (time at which stresses & pressures are below
target material yield strength).

V. CONCLUSIONS

The simulation of contact surface erosion in Lagrangian analyses of high
velocity impacts appears to be a most promising refinement which extends the
capabilities of Lagrangian codes for problems involving perforation of solids.
The methodology permits simulation of deep penetration which previously was
limited to Eulerian codes. Furthermore, the methodology has been demonstrated
to yield residual parameters that are in good agreement with experimental data
at a considerable reduction in CPU time and memory requirements for a
comparable Eulerian analysis.
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